Influence of Geometry on the Stiffness of Corner Finger Joints

Gourav Kamboj, Vladimír Záborský, Tomáš Girl

Abstract


Finger joints enable the full utilization of wood. The finger joint technique is used to eliminate wood defects that would otherwise weaken the wood strength. This research project evaluated how the wood species, adhesive type, and number of teeth affect the elastic stiffness of finger joints. The adhesives used were polyurethane and polyvinyl acetate, and the wood species were beech (Fagus sylvatica L.) and spruce (Picea abies L.). This study also determined the elastic stiffness of finger joints with 2 teeth and 5 teeth. For this purpose, the samples were loaded via a bending moment reaction, with tensile or compression forces in the angular plane. The highest elastic stiffness was obtained from the beech wood samples with 5 teeth bonded with polyvinyl acetate adhesive under tensile stress. Therefore, it was concluded that the elastic stiffness increased when the number of teeth increased. However, further studies on the elastic stiffness of finger joints are necessary in relation to the finger teeth length and surface area of the glue between the finger joint connections.

Keywords


Wooden construction; Finger joint; Mechanical loading; Elastic deformation; Elastic stiffness

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126