Development of Seaweed-based Bamboo Microcrystalline Cellulose Films Intended for Sustainable Food Packaging Applications

D. Hermawan, Tze Kiat Lai, Shima Jafarzadeh, Deepu A. Gopakumar, M. Hasan, F. A. T Owolabi, N. A Sri Aprilia, Samsul Rizal, H. P. S. Abdul Khalil


Seaweed bio-composite films with different proportion of Lemang and Semantan bamboo microcrystalline cellulose (MCC) were fabricated via solvent casting. The seaweed/MCC composite films were flexible, transparent, and slightly yellow. The MCC particles further enhanced mechanical properties and opacity of films. The thermal stability of seaweed films was moderately improved upon addition of bamboo MCC particles. Bamboo MCC was found to be comparable to commercial MCC in reducing the water vapor permeability (WVP), water solubility (WS), and moisture absorption capacity (MSC) of seaweed films. The tensile strength (TS) of seaweed films was increased by 20 to 23% with addition of up to 5% MCC particles. In addition, bamboo MCC efficiently reduced the WVP of seaweed films comparable to commercial MCC particles. The WS of seaweed films was decreased by 10 to 19% with addition of 1% MCC particles loading. Lemang bamboo MCC (SB-MCC) was remarkably reduced the moisture absorption capacity (MAC) of films up to 25% with inclusion of only 1% MCC. Morphological analysis via Scanning Electron Microscopy (SEM) confirmed that there was homogeneous dispersion of MCC particles in the films. MCC particles improved the mechanical, thermal, and optical properties of seaweed films making them more suitable for food packaging applications.


Edible seaweed; Bamboo; Microcrystalline cellulose; Thermal stability; Food packaging

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126