Reinforcing 3D Print Methacrylate Resin/Cellulose Nanocrystal Composites: Effect of Cellulose Nanocrystal Modification

Xinhao Feng, Zhihui Wu, Yanjun Xie, Siqun Wang


Cellulose nanocrystals (CNCs) were modified with methyl methacrylate (MMA) to improve the properties of the resulting three-dimensional (3D) stereolithography printed CNC/methacrylate (MA) resin composites. The dispersibility of the MMA-modified CNCs (MMA-CNCs) was substantially improved, as evidenced by the limited precipitation in the MA solution. Thermal gravimetry and differential scanning calorimetry measurements showed that the pyrolytic temperature of the MMA-CNC was 110 °C higher than that of the CNCs; the pyrolytic temperature and glass transition temperature of the resulting MMA-CNC/MA composites were higher than those of the CNC/MA. The tensile strength and modulus of the MMA-CNC/MA composites were improved by up to 38.3 MPa and 3.07 GPa, respectively, compared to those of the CNC/MA composites. These results demonstrated that the modification of CNC with MMA is a feasible approach to substantially improve the mechanical properties and thermal stability of the resulting MA-based composites.


Methyl methacrylate; Cellulose nanocrystal; Grafting; Stereolithography; Thermal performances

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126