Anti-bacterial and Anti-mold Efficiency of Silver Nanoparticles Present in Melamine-laminated Particleboard Surfaces

Erik Nosal, Ladislav Reinprecht

Abstract


Laminated surfaces of wooden composites are created from decorative papers and impregnation thermosetting resins, mainly melamine-formaldehyde (MF). This type of surface treatment is not always resistant to microorganisms, especially when polluted with organic substances. Bioactive additives are often needed to improve the microbial resistance. In this study, silver nanoparticles (Ag-NPs), in amounts of 0.15  10-3 wt.%, 0.5  10-3 wt.%, 1.5  10-3 wt.%, 5  10-3 wt.%, 15  10-3 wt.%, and 50  10-3 wt.% were added to MF resin. The presence of Ag-NPs in the laminated surfaces of the particleboards improved their anti-bacterial and anti-mold resistances. Growth of gram-positive bacterium Staphylococcus aureus on the sterilized surfaces decreased by approximately 53.7% at most, while the growth of gram-negative bacterium Escherichia coli decreased by up to 100%. The anti-mold resistance of the polluted laminated surfaces containing Ag-NPs increased against Penicillium brevicompactum by up to 62.5%, but there was almost no improvement against Aspergillus niger. The Ag-NPs did not affect the resistance of the laminated surfaces towards aggressive chemicals and only minimally towards dry heat at 180 °C. This inorganic biocide decreased the abrasion resistance of the laminated surfaces by up to 12.6%.

Keywords


Ag nanoparticles; Antimicrobial surface; Bacteria; Melamine laminate; Molds

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126