Dimensional Changes of Cross-Laminated Specimens Produced under Different Conditions due to Humidity Variation

Yeonjung Han, Yonggun Park, Sang-Yun Yang, Hyunwoo Chung, Yoon-Seong Chang, Hwanmyeong Yeo


Cross-laminated timber (CLT) is becoming increasingly adopted into wooden construction of South Korea. Due to the lack of standards and protocol for CLT, there are many problems in the production and utilization phases. This study focused on the deformation and defects of CLT due to humidity variations. In this study, small, cross-laminated specimens were manufactured using three layers of laminated larch planks that had various moisture contents. The dimensional changes of these specimens were measured in response to changing internal conditions including side adhesion or moisture content variation and external conditions such as humidity. Shrinkage in width and thickness was less than 1.0% when using dry planks as the cross-laminated specimen. However, high-moisture content (MC) planks were not suitable when used as the surface layer of the CLT, as the shrinkage in width and thickness were greater than 2.0%. When high-MC planks are used in the inner layer, their shrinkage must be less than 2% to prevent splitting caused by a MC difference between the surface and inner planks. For this purpose, laminates with a MC less than 15% should be used for CLT.


Cross-laminated timber; Dimensional change; Larch; Shrinkage; Ultimate deformation

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126