Influence of Moisture Content of Solid-state NaOH Pretreatment and Codigestion on Methane Production in the Semi-dry Anaerobic Digestion of Rose Stalk

Yongsheng Chen, Zhijuan Ke, Yue-Gan Liang


Large quantities of burned or abandoned rose stalks are leading to serious environmental pollution. In this study, the effect of the moisture content of a solid-state NaOH pretreatment on methane production was first determined by a biochemical methane potential test. Then, the effect of codigestion with pig manure on methane production was investigated under the optimal moisture via thermophilic semi-dry anaerobic digestion by leaching bed reactor. Biogas production kinetic was assessed by the first-order kinetic model and modified Gompertz model. An increase in methane yield and biogas production kinetics was shown in the solid-state NaOH pretreated biomass. There was no significant difference in methane production for the three moisture contents studied during pretreatment (54%, 70%, and 77%). The anaerobic codigestion of rose stalk and pig manure increased 41% to 52% for methane yields and improved biogas production kinetics compared with monodigestion of rose stalk. Anaerobic codigestion did not greatly change the process stability, except for NH4+-N. The optimal process for the anaerobic digestion of rose stalk was as follows. The rose stalk was initially pretreated via solid-state NaOH pretreatment with a moisture content of 70%. Then, the pretreated rose stalk was co-digested with pig manure at a total solids ratio of 1:1.


Moisture content; Solid-state NaOH pretreatment; Codigestion; Semi-dry anaerobic digestion; Kinetic assessment

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126