Tensile Properties and Mechanism of Laser-cut Bamboo Slivers

Wenfu Zhang, Shaohua Gu, Hong Chen, Cuicui Wang, Haitao Cheng, Ge Wang


This study aimed to evaluate the tensile properties and the failure mechanisms of bamboo slivers that were subjected to different methods of laser-cutting with changing parameters. The failure of the sample was observed through in situ tensile testing combined with scanning electron microscopy. The results indicated that laser-cutting could achieve high efficiency and minimal size variation in machining; however, the calculated sample size needed modification. When the laser power, cutting rate, and sample size were equal to 40 W, 5 mm  s-1, and 2 mm, respectively, the achieved tensile strength was 328.8 MPa, and the tensile modulus was 25.2 GPa. During testing, the surface of the laser-cut sample exhibited brittle fractures (with its interior typically damaged between the basic tissue and the fiber interface), fiber breakage, and fiber extraction.


Bamboo sliver; Laser-cut; Tensile properties; In situ tensile

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126