Feasibility of Predictive Assessment of Bending Performance of CLT Plates of Canadian Hemlock

Wenbo Xie, Yao Lu, Zheng Wang, Xiwei Wang, Xiaoli Wu, Zizhen Gao

Abstract


The correlation between the bending elastic modulus of lumbers along the primary direction and that of the resultant cross-laminated timber (CLT) plates in the full size suitable for slabs or wallboards was investigated to verify the feasibility of predicting the bending performance during the manufacturing of heavy building structures of this new type of material. A batch of Canada hemlocks lumber was graded based on a vibrational test that measures longitudinal elastic modulus. The elastic modulus and shear modulus in the transverse direction were also measured using the scheme of a torsional modal analysis of a cantilever plate. CLT were fabricated using the graded lumbers in sizes suitable for slabs or wallboards. The elastic moduli of these CLT products were measured using a conventional four-point static bending test. Finally, the static measurements of the elastic moduli of the CLT were compared with their predicted values that were calculated with the aforementioned data collected from the lumber pieces. The predicted elastic modulus along the primary direction of a CLT product agreed with the measured values. Therefore, the mathematical model of the CLT plate and the equation of its elastic modulus are feasible for the bending performance prediction in industrial production of CLT.

Keywords


Canadian hemlock; Lumber; Cross-laminated timber; Transverse vibration method; Bending performance; Prediction and evaluation; Application

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucian.lucia@gmail.com URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126