Cellulose with Bidentate Chelating Functionality: An Adsorbent for Metal Ions from Wastewater

Abdalhadi Deghles, Othman Hamed, Mai Aza, Bahia Abu Lail, Khalil Azzaoui, Ahmad Abu Obied, Shehdeh Jodeh


A cellulose derivative with multiple coordination sites for metals composed of cellulose powder and 1,2-pheneylnediamine was synthesized and evaluated as an adsorbent for metal ions from wastewater. The cellulose powder was generated from the solid waste of the olive industry. The adsorption efficiency of the cellulose amine polymer toward Fe(III) and Pb(II) was investigated as a function of adsorbent dose, temperature, pH, and time. The adsorption parameters that lead to excellent adsorption efficiency were determined. In addition, the polymer showed an excellent extraction efficiency toward approximately 20 metal ions present in a sewage sample. The cellulose amine derivative had several coordination sites that included amine, hydroxyl, and aromatic groups. The diversity and frequency of the coordination sites explained the high efficiency of the polymer for metal ions. The thermodynamic analysis results supported the spontaneous adsorption efficiency of the polymer at room temperature. The adsorption process fit well with the Langmuir adsorption isotherm model.


Cellulose powder; Metal ion; 1,2-Phenylene diamine; Wastewater; Cellulose aldehyde; Atomic adsorption spectroscopy

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126