A Conceptual Framework for Modelling the Thermal Conductivity of Dry Green Roof Substrates

Nataliia Gerzhova, Jean Cote, Pierre Blanchet, Christian Dagenais, Sylvain Menard


The fire performance of green roofs has never been assessed numerically. In order to simulate its fire behavior, the thermal conductivity of a growing media must be determined as an important input parameter. This study characterized the thermal conductivity of a dry substrate and its prediction as a function of temperature, considering temperature effects on soil organic and inorganic constituents. Experimental measurements were made to provide basic information on thermophysical parameters of the substrate and its components. Thermogravimetric analysis was conducted to consider the decomposition of organic matter. An existing model of the thermal conductivity calculation was then applied. The results of calculated and measured solid thermal conductivity showed close values of 0.9 and 1.07 W/mK, which demonstrates that the model provided a good estimation and may be applied for green roof substrates calculations. The literature data of a temperature effect on soil solids was used to predict thermal conductivity over a range of temperatures. The results showed that thermal conductivity increased and depended on porosity and thermal properties of the soil mineral components. Preliminary validation of obtained temperature-dependent thermal conductivity was performed by experiments and numerical simulation.


Green roof; Growing medium; Green roof substrate; Thermal conductivity; High temperature

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126