Identification of Topography of Surfaces Created by Turning Biomaterials with Optical Profilometry

Zuzana Mitalova, Dusan Mital, Frantisek Botko, Juliana Litecka, Jozef Zajac, Marta Harnicarova, Jan Valicek


This study deals with the identification of the topography of the surface that is created by machining composite materials with natural fibres (biomaterials, wood-plastic composites – a material with plastic matrix and natural reinforcement). The final surface was evaluated based on tool geometry (turning technology), and the influence of the tool on selected evaluating parameters of the obtained surface was evaluated using a non-contact method, applying an optical profilometer (MicroProf FRT). After machining the surface, characteristic relief (a trace on the surface of the material) was visible depending on the machining factors combination (machine, tool, workpiece, and fixture). The initial material also played a prominent role in the surface monitoring, in relationship to the composition of the material and the interaction between the matrix and reinforcement, i.e., detection of defects in the area of the interaction between the initial components.


Natural reinforcement; Wood-plastic composite; Topography of surface

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126