Fiber Content Determination of Linen/Viscose Blends Using NIR Spectroscopy

Jing Huang, Chongwen Yu


Linen/viscose blended yarns provide unique properties, but the quality and cost of the fabric composed of the blended yarns are affected by the amount of linen fibers. The existing methods of detecting blending ratio are microscopy or specific component dissolution, which is time-consuming and inconvenient. This study considers the possibility of rapid and simple determination of linen content by the near infrared (NIR) method. A set of linen/viscose powdered blends with 11 different ratios was fabricated. For each sample, 10 sets of spectra were collected by Fourier transform (FT)-NIR spectrometer. A total of 110 spectra sets were generated, in which 60 were used for calibration and 50 for validation. There were verified differences in NIR peaks assigning to representative chemical bonds in cellulose. With the chemometric analysis, a partial least squares (PLS) model was established to predict the linen content in a blended sample. With a combination of smoothing, baseline offset, and multiplicative scatter correction processing of the spectral data, the established PLS model was further improved to achieve a standard validation error of only 1.182% and SD value of the predicted linen content less than 0.2, which indicated the accuracy of the developed method.


NIR spectroscopy; Linen/viscose blends; Fiber content; PLS model

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126