Hemp Derived Activated Carbon Supported Nanoscale zero–valent Iron as a Heterogeneous Fenton Catalyst for the Treatment of Pulping Effluent

Lihuan Mo, Sizai Zhou, Shuang Yang, Jie Gong, Jun Li


Activated carbon (AC) and nanoscale zero–valent iron (nZVI) have been widely used in wastewater treatment, respectively, for the removal of organics. In this study, hemp fibers were applied to prepare AC by phosphoric acid activation at a carbonization temperature of 400°C. Then nZVI particles were immobilized onto the surface of hemp derived AC (HAC), and the composites (nZVI@HAC) were used as heterogeneous catalysts for Fenton–like treatment of pulping effluent. The as–prepared catalysts were characterized. The optimum conditions for Fenton–like reaction and the reusability of catalyst were investigated. Results showed that nZVI particles were well distributed on the surface of HAC without aggregation. Both HAC and nZVI@HAC have microporous structure. With the loading of nZVI, the catalysts were endowed with magnetism and more active sites. Under the optimal conditions (initial pH 3.0, H2O2 35 mmol/L, 2–nZVI@HAC 3.0 g/L), COD removal rate reached 87.74% of the highest. This work illustrated that the feasibility of HAC as a carrier of nZVI, and nZVI@HAC was an effective heterogeneous Fenton catalyst.


Hemp fiber; Activated carbon; Nanoscale zero–valent iron; Fenton–like oxidation; Pulping effluent

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126