Tuning of Adhesion and Disintegration of Oxidized Starch Adhesives for the Recycling of Medium Density Fiberboard

Muhammad Adly Rahandi Lubis, Byung-Dae Park, Min-Kug Hong


Oxidized starch (OS) adhesives with a balance between their adhesion and disintegration properties were prepared by controlling the degree of oxidation and modifying the cross-linker type and level to replace urea-formaldehyde (UF) resins for easy recycling of medium density fiberboard (MDF). Four molar ratios of H2O2/starch, two types of cross-linker, i.e., blocked-pMDI (B-pMDI) and citric acid (CA), and three levels of the cross-linkers were employed to tailor the performance of the OS adhesives. The OS reacted with the isocyanate groups from the B-pMDI to form amide linkages, while it formed ester linkages by reacting with the CA. The resulting B-pMDI/OS-bonded MDF had better physical and mechanical properties than the CA/OS-bonded MDF, with comparable adhesion (0.34 MPa) to UF resins and ten times greater degree of fiber disintegration than UF resins. The combination of a 0.5 molar ratio OS with 7.5 wt% of B-pMDI produced MDF exhibiting an optimal balance between adhesion and disintegration, suggesting that such OS adhesives could someday replace UF resins in manufacturing and recycling of MDF without formaldehyde emission.


Blocked pMDI; Citric acid; Cross-linking; Oxidized starch adhesives; Medium density fiberboard; Recycling

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126