Investigating the Pyrolysis Kinetics of Pinus sylvestris Using Thermogravimetric Analysis

Langui Xu, Jiawei Zhou, Jiong Ni, Yanru Li, Yan Long, Ruyi Huang


Thermogravimetric analyses of Pinus sylvestris from Xinxiang were performed to investigate its kinetic characteristics, which could provide information for industrial applications. Thermal degradation experiments were conducted at various heating rates of 10 °C/min, 20 °C/min, and 60 °C/min using a thermogravimetric analysis-differential scanning calorimetry (TG-DSC) analyzer with an inert environment. The peak pyrolysis temperatures of the three major components (hemicellulose, cellulose, and lignin) were predicted by the Kissinger-Kai method, and activation energy values (Eα) were calculated. The Eα of Pinus sylvestris was also estimated by two model-free methods. The decomposition reactions of hemicellulose, cellulose, and lignin at different temperatures were the main reason for fluctuations in Eα. The time for heat transfer was less sufficient at a high heating rate compared with that at a low heating rate, which caused the temperature gradients in the samples. Therefore, the temperature of maximum exothermic peaks was higher than the maximum pyrolysis temperature. This kinetic study could be useful for providing guidance for optimizing the biomass pyrolysis process.


Pinus sylvestris; Pyrolysis; Thermogravimetry; Activation energy

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126