Comparisons of Finite Element Models Used to Predict Bending Strength of Mortise-and-tenon Joints

Wengang Hu, Na Liu


This study aimed to obtain a better method for establishing a finite element model of mortise-and-tenon (M-T) joints. Three types of M-T joint finite element models, which included a whole rigid model, a tie rigid model, and a semi-rigid model, were established and compared with experimental results by predicting the bending moment capacity (BMC) of M-T joints based on the finite element method (FEM). The results showed that the semi-rigid model performed much better than the tie rigid model, followed by the whole rigid model. For the semi-rigid model, the ratios of FEM ranged from 0.85 to 1.09. For the whole rigid model and tie rigid model, the BMC of the M-T joint was overestimated. In addition, the results showed that tenon size remarkably affected the BMC and stiffness of the M-T joint, and tenon width had a greater effect on the BMC of the M-T joint than the tenon length.


Finite element method; Semi-rigid joint; Mortise-and-tenon; Bending moment capacity

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126