Using Cell Cross-section Dimensions and Digital Image Correlation to Evaluate Drying Shrinkage and Collapse in Eucalyptus Nitens Wood

Alan Dickson, Bernard Dawson

Abstract


An approach combining maps of wood morphology and digital image correlation was developed to investigate the drying of Eucalyptus nitens wood. Maps of morphological features (vessel and ray distribution) and cell cross-section dimensions were acquired by confocal laser scanning microscopy. Shrinkage maps were generated using digital image correlation. There were statistically significant correlations between shrinkage/collapse and wood morphology at two levels. Firstly, there were positional relationships, with for example, both radial and tangential shrinkage increasing with increasing distance from vessel elements. Secondly, there were dimensional relationships, such as, cells with large perimeters (relative to their wall thickness) on average showing greater shrinkage. Generally, the positional relationships dominated the dimensional relationships. Detailed analysis over large areas allows for a fuller analysis of the interrelationship between wood morphology and drying shrinkage and collapse.

Keywords


Wood drying; Wood shrinkage and collapse; Digital image correlation; Wood morphology; Confocal microscopy; Eucalyptus nitens

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126