Prediction of Wood Elastic Strain Development Trend in Conventional Drying Process Based on GM-BP Model

Wanhui Gao, Jingyao Zhao, Xiaodong Zhu, Dongyan Zhou, Liangyan Guo, Yingchun Cai

Abstract


The elastic strain of wood reflects the nature (stretching or compression) and the magnitude of the drying stress at that time during the conventional drying process. The accurate prediction of strain is important to optimize the drying process and to improve drying speed and quality. In this work, the elastic strain was measured in real time, and moisture content was measured by periodic weighing during the drying process. Using these data, the GM (1,1) grey prediction model was used to predict moisture content in adjacent periods in the future. Based on the moisture content predicted by GM (1,1), a BP neural network was constructed to predict the development trend of elastic strain in the surface layer and core layer. The prediction results of the GM-BP combination model showed that the fitting error range of the prediction of the surface layer elastic strain was [-5×10-3~5×10-3], with a mean square error (MSE) of 2.31×10-7. The elastic strain of the core layer was [-2×10-3~2×10-3], and the MSE was 3.86×10-8. Thus, the GM-BP model achieved high accuracy for predicting the development trend of elastic strain. It can provide a new method and innovative thinking for the optimization and control of wood drying process.

Keywords


Conventional wood drying; Grey prediction model; BP neural network; Elastic strain; Development tendency

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126