Simultaneous Hydrolysis and Fermentation of Defatted Rice Bran and Defatted Soybean Meal for Nisin Production with Engineered Lactococcus lactis

Jiaheng Liu, Xiangyu He, Yuhui Du, Itsanun Wiwatanaratanabutr, Guangrong Zhao, Hongji Zhu, Qinggele Caiyin, Jianjun Qiao

Abstract


This work aimed to study the potential of defatted rice bran (DRB) and defatted soybean meal (DSM) as carbon and nitrogen sources for Lactococcus lactis growth and nisin production. First, a maximum nisin yield of 3630 IU/mL was achieved using 40% DRB hydrolysates and 30% DSM hydrolysates, which was 1.13 times greater than that found in commercial media. Second, to simplify the operation and shorten the length of the entire process, the processes of combined hydrolysis of DRB-DSM followed by fermentation, and simultaneous hydrolysis and fermentation of DRB-DSM were developed. Neutral proteinase enhanced the saccharification of DRB by cellulase and α-amylase. Furthermore, the strategy of NADH oxidase expression and hemin addition was innovatively proposed to overcome the oxygen stress in a simultaneous hydrolysis and fermentation process, which could alleviate the lag period following inoculation of L. lactis and result in a 77.3% increase in nisin titer.

Keywords


Defatted rice bran; Defatted soybean meal; Nisin; Lactococcus lactis; Simultaneous hydrolysis and fermentation

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126