Industrial Scale-up of Fiber Recovery Technology from Mixed Office Waste Fine Screen Rejects

Zhen-Hua Su, Shu-Jie Fan, Yu Zhang, Chao Tian, Chen Gong, Jian-Ping Ni, Bin Yang, Feng Peng, Mika Korkko, Mohamed Said Mahmoud


Industrial-scale testing was performed for fine screen reject recovery technology with a mixed office waste (MOW) pulping line. Results showed that the recovery system removed macrostickies and dirt specks with an efficiency of 95.7% to 98.3% and 51.5% to 76.8%, respectively. These results were not affected by the running consistency (0.26% to 1.44%). The recovery system improved the physical strength of the pulp. Relative to untreated rejects, the tensile index increased 5.1% to 15.2%, the tear index increased 6.6% to 11.4%, and the breaking index increased 6.6% to 25.7%. Running consistency had no obvious effects on tensile strength and tear strength, but bursting strength increased with increasing running consistency (%). The volume energy consumption (y) increased with increasing running consistency (x), and a linear relationship of y = 0.73x + 4.2191 (R² = 0.9466) was observed. The specific energy consumption (y) of the pulp decreased with increasing running consistency (x), and the relationship could be expressed as y = 499.67x-0.906 (R² = 0.9959).


Secondary fiber; Fine screen reject; Fiber recovery; Macrostickies; Dirt specks; Physical strength

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126