A Simple Method to Determine the Diffusivity of Green Wood

Rémy Frayssinhes, Stéphane Girardon, Bertand Marcon, Louis Denaud, Robert Collet

Abstract


Log temperature appreciably influences veneer quality during the rotary peeling process. The assessment of the thermal properties of green wood is complex and typically requires the sawing of small calibrated samples. This study introduced a simple approach based on an inverse identification method to determine the global log thermal diffusivity online and without the time-consuming extraction of wooden samples that is commonly used to perform diffusivity experiments. This method was applied to green Douglas fir logs and resulted in an average thermal diffusivity of 0.175 ± 0.021 mm2.s-1. This method was found to be suitable for both heartwood and sapwood and thus can provide a globally applicable diffusivity assessment method. This global parameter is essential to optimizing the soaking time and improving the subsequent veneer production quality. As log-soaking preprocessing requires an immense input of energy, this time-optimization strategy will allow sizable cost reduction and ecological improvement.

Keywords


Green wood; Thermal diffusivity; Douglas fir; Soaking temperature; Rotary peeling preprocessing

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126