Structural Evolution Mechanisms of Biochar from Solid State Fermentation Residues in a Novel V-shaped Down-tube Reactor during Fast Pyrolysis

Xiajin Ren, Juanjuan Wu, Donghong Zhang, Hang Xu, Hongzhen Cai, Xiaona Lin


The structural changes of biochar prepared from sweet sorghum bagasse during fast pyrolysis of 200 to 700 °C in a novel V-shaped down-tube reaction device was investigated by ultimate analysis, bomb calorimeter, Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and N2/CO2 adsorption methods. The results showed that the pyrolysis temperature had an important effect on the composition and physicochemical properties of sweet sorghum bagasse biochar. With the increase of pyrolysis temperature, the yield of biochar and the polar functional groups decreased, but the higher heating values and mineral salts increased. However, the surface area, pore volume, and adsorption (N2, CO2) increased first and then decreased. The biochar obtained at 500 °C had the most developed pore structures. The experimental results shed light on the high-quality utilization of sweet sorghum bagasse obtained from advanced solid-state fermentation.


Sweet sorghum bagasse; V-shaped down tube reactor; Fast pyrolysis; Biochar; Characterization

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126