Application of Enzymes for the Reduction of PFI Revolutions in the Secondary Pulping Process and Characteristics of Thermomechanical Pulp

Shuai Wu, Xiaojuan Ma, Shilin Cao, Lihui Chen, Liulian Huang, Fang Huang


Three enzymes, mannanase, xylanase, and cellulase, were applied for hydrolysis of thermomechanical pulp (TMP) primary discharge prior to PFI refining, aiming to study the effect of enzymatic hydrolysis on the required number of PFI revolutions. The quantity of reducing sugar was used as an indicator for enzyme hydrolysis efficiency. Then, under the optimized enzyme loading, treated and un-treated pulp were refined with different PFI revolutions. Subsequent fiber characteristics, such as fiber length and fines content were examined. Under the optimized enzyme loadings and a given 20000 PFI revolutions, in comparison with the control pulp, mannanase and xylanase pre-treatment could save PFI refining revolutions by 20% and 25%, respectively. There was no significant energy savings for the cellulase-treated pulp. During the hydrolysis, the enzyme broke down TMP fibers into shorter pieces and yielded more fines than the control pulp. Among the three enzymes, cellulase showed the highest efficiency in fiber breakdown, mannanase in the middle, xylanase the lowest. Longer hydrolysis time (more than one hour) had no evident effect on the pulp freeness reduction and reducing sugar production. Among the three enzymes, under the optimized enzyme loading, cellulase was the most efficient for enhancing production of reducing sugars.


Enzyme; TMP; Refining energy

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126