The Effects of Activation Conditions on Physical Properties of Activated Carbon

Yan Luo, Kang Wang, Ling Fei

Abstract


Porous carbons with a high porosity were successfully produced from fast pyrolysis pine wood char via a thermochemical method in which KOH was used as chemical activator. The effects of various weight ratios of KOH to pyrolysis char (0.65:1, 0.7:1, 1.0:1, 1.35:1, and 1.7:1) on the physical properties of activated carbons were investigated. When the weight ratio of KOH to pyrolysis char was 1.35:1, the prepared activated carbon had the highest surface area of 1140 m2/g with a total pore volume of 0.71 cm3/g, a microporous surface area of 957 m2/g, and a microporous specific volume of 0.51 cm3/g. As the weight ratio of KOH to pyrolysis char increased from 0.65 to 1.35, the prepared activated carbon had increases in total surface area, total pore volume, microporous surface area, and specific volume of micropores. However, there was a reverse trend when the weight ratio of KOH to pyrolysis char was higher than 1.35. The use of nitrogen as a flow gas resulted in much more developed activated carbon than without nitrogen. The experiment results suggested that activated carbon with high surface area could be prepared from pyrolysis char by adjusting the activation conditions.

Keywords


Activated carbon; Pyrolyzed pinewood char; KOH; Nitrogen

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126