Antifungal Activity of Methylxanthines Based on Their Properties

Klára Kobetičová, Jana Nábělková, Kristýna Ďurišová, Kristýna Šimůnková, Robert Černý

Abstract


Wood materials for construction purposes can be attacked by various wood-destroying fungi. An ideal wood-preserving substance is supposed to be environment- and health-friendly. For this reason, the effects of the most relevant and non-toxic methylxanthines, such as caffeine and its metabolites theobromine and theophylline, on fungal growth, together with their degradability related to their properties were analyzed in this study. Agar tests with four wood-destroying fungal species (Serpula lacrymans, Coniophora puteana, Gleophyllum sepiarium, and Trametes versicolor) were performed after 28 days of substance exposure. Caffeine exhibited a 100% inhibitive effect on fungal growth, contrary to theobromine, which was not effective in that respect. Theophylline exhibited variable effects on the analyzed fungi. The analysis of degradability indicated the persistence of caffeine and theobromine, but theophylline was degraded up to 34%. The relation of toxicity to chemical structure of studied methylxanthines indicated the dipole moment and lipophilicity as important parameters affecting the antifungal properties. Both caffeine and theophylline are suitable potential candidates for antifungal active substances.

Keywords


Methylxanthines; Caffeine; Theobromine; Theophylline; Fungi; Antifungal effects

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126