Effects of Pilot Hole Diameter and Depth on Screw Driving Torques in Plywood

Onder Tor, Emre Birinci, Lingling Hu, Chen Chen


Factors affecting screw driving torques in plywood were investigated in this work. The factors were number of layers (7 and 9), pilot hole diameter (3.0 and 3.5 mm), pilot hole depth (60 and 80% of the thickness of specimen), and thickness of the metal plate (7.5 and 10 mm). Screw driving torques were studied in oriented strandboard, medium-density fiberboard, particleboard, and some wood-plastic composites. There is no such information about screw driving torques in plywood (PW). Therefore, this study focused on the plywood made of aspen (Populus tremula L.). The mean seating torque (SET) values ranged from 0.31 to 0.69 N∙m, whereas mean stripping torque (STT) values ranged from 0.50 to 4.7 N∙m. The ratios of STT/SET were between 2 and 5 in PW with seven layers, whereas the ratios were between 4 and 7 in PW with nine layers. The results indicated that the four main effects of SET and STT were statistically significant with p-values of ˂ 0.0001.


Screw; Face orientation; Seating torque; Stripping torque

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126