Reducing the Formation of Adsorbable Organic Halides Using an Ammonium Thiosulfate Chlorine Dioxide Bleaching Process

Yan Li, Liming Cao, Kaiqi Gu, Xinyue Wang, Yunbiao Pang, Qin Wu, Shuangquan Yao

Abstract


Reducing the formation of adsorbable organic halides during chlorine dioxide bleaching (the first stage chlorine dioxide bleaching, D0) is necessary to obtain clean bleaching processes. A new bleaching agent, ammonium thiosulfate (AT), was investigated to determine its potential for reducing the amount of adsorbable organic halides (AOX). Upon investigating the optimal reaction conditions for an effective reduction in AOX, the authors determined that adding 0.20% of AT 10 min after the beginning of the bleaching reaction, while maintaining a pH of 4 and a temperature of 70°C, yielded the best results. Under these conditions, AOX formation decreased by 22.0%. The bleaching effluent after the addition of AT was analyzed via gas chromatography-mass spectrometry, which showed an inhibited production rate of chlorobenzene and chlorophenol, which are both highly toxic and difficult-to-degrade compounds. Therefore, AT not only reduces AOX formation during the bleaching process, but also minimizes the difficulty of treating bleaching effluent. The results of this study provided a new, clean method for reducing AOX formation during chlorine dioxide bleaching.

Keywords


Chlorine dioxide bleaching; AOX formation; Ammonium thiosulfate; Chemical composition

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126