Classification Option for Korean Traditional Paper Based on Type of Raw Materials, Using Near-infrared Spectroscopy and Multivariate Statistical Methods

Kyung Ju Jang, Tae Young Heo, Seon Hwa Jeong


Depending on the different types of raw materials used to produce hanji, a Korean traditional handmade paper, there can be significant differences in the durability and mechanical properties of the final product. In this study, near-infrared spectroscopy (NIR) combined with multivariate statistical methods were used to confirm the classification possibility of hanji based on the various type of raw materials. The hanji papers were prepared from paper mulberry trees, cooking agents, and mucilage. Altogether, a total of 60 hanji spectra were collected by NIR. Then, the 60 spectra were grouped into four categories: the control, paper mulberry, cooking agent, and mucilage type based on each of the types of raw materials contained in the hanji. Three different classification algorithms – partial least squares discriminant analysis (PLS-DA), support vector machines (SVM), and random forest (RF) – were used to classify the hanji types. The best hanji material classification performance was obtained when the hanji samples were classified according to paper mulberry type, wherein the prediction accuracies of PLS-DA, SVM, and RF were 100%, 100%, and 98%, respectively. These results suggested that NIR in combination with multivariate statistical methods can be used for hanji material classification.


Hanji; Near-infrared spectroscopy (NIR); Partial least squares discriminant analysis (PLS-DA); Support vector machines (SVM); Random forest (RF)

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126