Pyrolysis Behaviors, Kinetics, and Byproducts of Enzymatic Hydrolysis Residues for Lignocellulosic Biorefining

Rongwen Zhao, Zhongyang Liu, Tongjun Liu, Liping Tan


Enzymatic hydrolysis residues (EHR) are the solid wastes from enzymatic hydrolysis and/or fermentation of the cellulosic bioethanol industry. These byproducts have not been effectively used. Thermogravimetric analysis with infrared spectroscopy (TG-IR) and pyrolysis-gas chromatography/ mass spectrometry (Py-GC/MS) were used to quantify the pyrolytic bioenergy potential of EHR with alkaline hydrogen peroxide (AHP) and bisulfite (BSF) pretreatment through assessing their pyrolysis behaviors, kinetics, and byproducts. The TG-IR analysis showed that the EHR pyrolysis temperature range was 180 °C to 620 °C and consisted of three consecutive stages: dehydration, rapid pyrolysis, and carbonization. The main volatile products evolved from the EHR pyrolysis were CO, CO2, H2O, and CH4. Fast pyrolysis results from Py-GC/MS indicated that the main pyrolytic byproducts of EHR were phenols (30.68%), furans (14.27%), and acids (8.52%) for AHP-EHR; and phenols (26.75%), furans (15.54%), and acids (10.33%) for BSF-EHR. The results provide insights for expanding the potential of bioenergy and increasing the value-added byproducts based on the biomass part of EHR.


Pyrolysis behavior; Enzymatic hydrolysis residues; Corn stalk; Alkaline hydrogen peroxide pretreatment; Bisulfite pretreatment

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126