Optimization of the Parameters for the Molding Process of Small-Size Rice Straw Insulating Blocks via Response Surface Methodology

Weili Yuan, Anhong Bao, Xinlei Han, Qiu Luo


Rice straw, which is considered an excellent insulation material, can be filled into the hollows of concrete block after being pressed, thereby improving the thermal performance of the concrete block. This new type of straw-concrete composite block will have good mechanical and thermal properties. In this study, to explore the feasibility of this new type of block, the response surface method was introduced. The goal was to find the effects of processing parameters on the forming quality of straw blocks. The quadratic regression model was established, and the processing parameters were optimized. It was found that the forming density, vertical pressure, pressure-holding time, and the interaction between the forming density and pressure-holding time had significant effects on the forming quality of the straw blocks. The optimal conditions obtained by RSM optimization were a forming density, a vertical pressure, and a pressure-holding time of 319.7 kg/m2, 2.5 kN, 33.68 s, respectively. Under these conditions, the volumetric contractivity of straw blocks was 11.17%, the horizontal failure strength was 21.74 kPa, and the natural moisture content was 16.37%. The parameters calculated via the prediction model were highly consistent with the results produced via the actual measurements, which showed that the prediction model was reliable and potentially useful in guiding industrial production.


Rice straw; Forming density; Volumetric contractivity; Response surface methodology

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126