Carbon Footprint Accounting and Low-Carbon Path Optimization for Imported Timber-based Wooden Furniture Supply Chains

Hui Wang, Jinzhuo Wu, Zhili Chen


Using an imported timber-based solid wood box bed (2000 mm × 1800 mm) as the functional unit, the ILCD 2011 midpoint assessment method was used to measure the life cycle carbon emissions of the product. Using this assessment, the Dijkstra algorithm was adopted to determine the shortest supply chain path and to obtain the minimum carbon footprint of the supply chain. Results showed that the total carbon footprint of the wood bed was 464 kg for the control case. For experimental cases, the carbon footprint ranged from 456 kg to 517 kg CO2-eq. The upstream process was identified as the primary contributor to the carbon footprint, accounting for 74.6% to 80.7% of the total carbon footprint, followed by the downstream and the core-stream processes. Configuration of a timber harvesting system with lower fuel consumption, purchasing timber from areas within shorter transportation distance, and reducing the proportion of incineration for waste treatment were feasible solutions to reduce the carbon footprint of the product. A case study optimizing the low-carbon path for the wooden furniture supply chain determined the shortest path for the participants in each link, such that the minimum total carbon footprint of the supply chain was 463 kg CO2-eq.


Solid wood bed; Dijkstra algorithms; Greenhouse gas; Sawn timber; Laminated timber

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126