Investigation of Electrical Characteristics Using Various Electrodes for Evaluating the Moisture Content in Wood

Sung-Wook Hwang, Sung-Yun Hwang, Taekyeong Lee, Kyung-Sun Ahn, Sung-Jun Pang, Jinseok Park, Jung-Kwon Oh, Hyo Won Kwak, Hwanmyeong Yeo


Electrical resistance and resistivity were measured with various types of electrodes to evaluate the moisture content of wood. The conventional two-pin method, electrically conductive fabrics, and multi-pin electrodes were used to measure the electrical resistance of Japanese larch (Larix kaempferi) wood, and a four-pin probe was used for resistivity measurements. The resistance in the longitudinal direction measured with the two-pin electrode was slightly affected by the dimensions of the wood sample, whereas the resistance measured with the conductive fabric and multi-pin electrodes was clearly affected by the end surface area in contact with the electrode and the length between electrodes. The resistivity calculated from the relationship between the electrical resistance and sample dimensions also showed differences based on the sample dimensions. The least squares regression model trained with the resistance data based on the two-pin method predicted the moisture content with a high coefficient of determination of 0.986. The four-pin probe produced the most stable resistivity regardless of the sample dimensions, making it a feasible approach for the moisture evaluation of large wood members.


Electrical resistance; Electrode; Four-point probe; Moisture content; Resistivity

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126