Comparison of Laboratory Methodologies to Determine Soil Nitrogen Mineralization from Organic Residues

María Rosa Yagüe, María Carmen Lobo

Abstract


Recycling organic waste for use as fertilizer requires prior knowledge of mineral nitrogen (N) availability for crops. Estimation of soil N release or potentially mineralizable N is an important tool for the design of fertilization strategies that aim to minimize the use of N fertilizer. The aerobic incubation method is considered a standard technique to measure soil potential to mineralize N. In this study, alternative methods of aerobic incubation were evaluated to help overcome its limitations (long time and equipment). In this regard, biological methods (anaerobic incubation at 7 and 14 days) and chemical extraction (hot KCl) procedures were examined. To determine potentially mineralizable N, a silty clay loam soil was fertilized with spent mushroom substrates and anaerobic digestates from different origins (C/N ratio of 4 to 38). Based on the results, chemical extraction emerges as a reliable alternative to the aerobic incubation method, particularly when the C/N ratio of the organic residues ranges from 12 to 15. Moreover, its implementation in routine soil laboratories is straightforward and faster, and it does not require any special equipment.

Keywords


Aerobic incubation; Anaerobic incubation; KCl hot; Organic fertilizers; Anaerobic digestate; Spent mushroom substrates

Full Text:

PDF


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022, hubbe@ncsu.edu; Lucian A. Lucia, (919) 515-7707, lucia-bioresources@ncsu.edu URLs: bioresourcesjournal.com; http://ncsu.edu/bioresources ISSN: 1930-2126