Design of a Stationary Disc Chipper Project for Dendromass Chipping with Stress Analysis FEM Methods

Jozef Krilek, Branislav Tichý, Ján Kováč, Ján Melicherčík, Tomáš Kuvik


The design of a stationary disc wood chipping machine was considered, as well as the stress-strain analysis of a cutting knife with a flat and shaped cutting edge, which will produce a dimensional chip. The design consisted of the conceptual design of a cutting knife, a cutting mechanism, and an entire disc chipping machine, which includes cutting tools. The design solution is based on mathematical calculations of the individual parts of the cutting device. Calculations of the cutting mechanism and the cutting tool were performed using the finite element method. The results of the stress analysis found that the maximum stress acting on the edge of the knife during cutting corresponded to the permissible stresses of the knife material and subsequent use in practice. Based on the design and physical parameters of the wood cutting process, the design of the entire chipping machine was simulated and then was modeled using the PTC Creo parametric 5.0 program. Additional finite element analysis was performed using the Creo Simulate 5.0 software.


Cutting force; Cutting edge; Chipping device; Stress analysis; Dendromass

Full Text:


Welcome to BioResources! This online, peer-reviewed journal is devoted to the science and engineering of biomaterials and chemicals from lignocellulosic sources for new end uses and new capabilities. The editors of BioResources would be very happy to assist you during the process of submitting or reviewing articles. Please note that logging in is required in order to submit or review articles. Martin A. Hubbe, (919) 513-3022,; Lucian A. Lucia, (919) 515-7707, URLs:; ISSN: 1930-2126