Fused Deposition 3D Printing of Bonsai Tree Guiding Mold Based on Acrylonitrile-Butadiene-Styrene Copolymer

Authors

  • Chen Wang College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu, China
  • Jingyao Li College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu, China
  • Tianyi Wang College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu, China
  • Qing Chu College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu, China
  • Xiaowen Wang College of Furnishings and Industrial Design, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu, Chin

Keywords:

Tree bonsai, Guiding mold, ABS, 3D printing

Abstract

Bonsai is a kind of classical art in China and Japan. The traditional method of bonsai shaping of miniature trees is technical and usually requires experienced horticulturists to successfully carry out the process. In order to let ordinary people feel the fun of bonsai shaping, this paper proposes a fast bonsai shaping method, i.e., by use of a plastic guiding mold with customized shape, which is processed by fused deposition 3D printing technology. The tree seedling is bundled onto the mold, and the shape of the mold guides the growth of the tree seedling, thus achieving the purpose of bonsai shaping. In order to further improve the bending properties of the bonsai guiding mold, this paper investigated the main 3D printing parameters of ABS filament. The results showed that with the decrease of printing speed, the increase of extrusion temperature, and the increase of hot bed temperature, the bending strength and elastic modulus of ABS specimens increased, and the bending properties was enhanced; the optimal printing speed was 50 mm/s, the extrusion temperature was 230 °C, and the hot bed temperature was 80 °C. The mechanical properties of the bonsai guiding mold manufactured based on the optimal process parameters were better, the print quality was higher, and it had high practical value.

Downloads

Published

2024-07-12

Issue

Section

Research Article or Brief Communication